Flowers are Magic

Robert Geneve Department of Horticulture University of Kentucky

Flowers are Magic

A closer look at floral diversity

Pollination

Pollination

Pollination is the process of transferring pollen from the stamens to the stigmatic surface.

Floral adaptations - Oil producing flowers

Oils are produced on trichomes or in secretory glands called <u>elaiophores</u>.

The oils are harvested by bees that use it with pollen to feed larvae.

Butterfly vine (Mascagnia macroptera)

Floral adaptations - Oil producing flowers

Oil producing flowers occur in over 2,300 species including:

Malpighiaceae Orchidaceae Scrophulariaceae Solanaceae Primulaceae Iridaceae

Byrsonima umbellata

Floral adaptations - Oil producing flowers

Lysimachia have oil producing flowers with oil <u>trichomes</u> located on sepal, petal and anther filaments.

Oil producing

trichomes

Loosestrife (Lysimachia punctata)

Floral adaptations – Resin glands

<u>Terpene resins</u> are collected by bees and have antibacterial and antifungal properties for nest lining.

Floral adaptations – Nectar guides

Flowers often have contrasting colors on the petals that act as <u>nectar guides</u> to signal a floral reward for visiting the flower.

<u>Floral adaptations – Nectar guides</u>

Some insects perceive color differently than humans and the nectary guides may not always to be obvious to us.

A Potentilla flower viewed under a simulated UV spectrum shows the "insect view" of the flower and nectar guides.

<u>Floral adaptations – Nectar guides</u>

In some Caesalpinoid legumes like royal Poinciana (*Delonix*), the upper flag petal has color nectar guides for pollinators.

Floral adaptations - Color change

Flower color can be a signal used by pollinators to locate preferred flowers.

In the borage family, flowers change from pink to blue.

<u>Floral adaptations – Color change</u>

Horsechestnut flowers have nectar guides that change from yellow to orange to red as the flower ages.

Floral adaptations - Color change

Floral adaptations - Color change

In some members of the rose family, like chokeberry (*Aronia*), the anthers change color to signal pollinators.

Floral adaptations - Color change

Color change can signal different pollinators.

Flowers open white and are pollinated by hawkmoths.

As the flowers change to red, they hang down and are pollinated by bees and flies.

Floral adaptations - Color change

The flowers in a Lantana inflorescence that initially emerge from the bud are yellow for one day, then turn orange on day 2 and finally change to pink-red.

One type of butterfly prefers to visit only yellow and orange flowers, while a different butterfly species prefers older pink-red flowers.

Pollination specialists – Buzz pollination

Bees cling to the cone-like shaped stamens and their buzzing shakes pollen out of the anthers and onto the bee.

Borage (*Borago*)

Shooting star (Dodecatheon)

Pollination specialists - Staminal lever

Salvia flowers have a unique stamen morphology that allows the anther to swivel using a <u>lever mechanism</u>.

An insect or bird probing the base of the flower for nectar causes the anther to hinge down coating the head with pollen.

Pollination specialists - Active stamen movement

Mt. Laurel (Kalmia) stamens are "spring loaded".

Pollination specialists - Active stamen movement

Pollination specialists - Active stamen movement

Barberry (*Berberis*) stamens react to the touch of a pollinator to abruptly move toward the visiting insect and release pollen and then resets.

Pollination specialists - Active stamen movement

Stamen closure movement is rapid, but the stamens will gradually reset after about 5 minutes.

Pollination specialists - Active stamen movement

Pollination specialists - Active stamen movement

The cactus, *Opuntia* also has irritable stamens that move toward the center of the flower when touched.

Before touch stimulation the stamens have moved.

Pollination specialists - Active stamen movement

Irritable stamens in *Opuntia* flowers.

Pollination specialists - Active floral movement

An example of <u>thermonasty</u> can be seen in some early spring flowering plants that open and close petals in response to temperature.

A cycle of opening and closing of the petals in bloodroot (Sanguinaria).

Pollination specialists - Active floral movement

Thermonastic petal movement in tulips. Temperatures below about 50°F (4°C) cause petals to close.

