

Industrial chemicals (29)	Pesticides (37)	Disinfection by- products (DBPs) (13)	Polymer residues (7)	Cyanotoxins (9)	PPCPs (6)
Becare Colorbanumo 12, Obra deveron 12, Obra deveron 12, Obra deveron 12, Obra deveron Partal Monas enan 2, Obra deveron 2, A - Obra deveron 2, A	2.4.0 strongenerative and [2.4.0] 2.4.0 strongenerative and [2.4.0] Personal Annual An	Chératown ⁴ BornodichicenseName DiscratochicenseName Truchors nareadau MonochisenseName Monochiseadé adu Discratochise Bornodicki adu Bornodicki adu Bornod	Arytania Eurofoshydri Dawleinerholaensonan efodia U Stantow 1, 2 Davros 2, 2 Detros 1, 9 prosent 2, 3 Detros 1, 9 prosent 3, Churn 1, 2 propendel	Coconer 7 24/8 - Angoin s Hintona Adaes Angoin s Hintona Adaes Manayata L Katala Katala Cylinto opermeter Ned-Lane	17) Estavalo Estrok Estrok Una estavalor Una estavalor Diado estavalor Estav

Filtration ... 2. Ultra filtration • Fluid passed through a pore sized membrane to separate micro-organisms from liquid Macro Suspended particles Colloidal compounds · Oils and emulsions Filters Compound Material filters Thuế (No Agen Although

	Reverse osmosis Single and multi charged ions							
	Symbol Common name		Effect					
	$CaCO_2$	Limestone	Soft scale					
	Ca(HCO ₃) ₂		Soft scale with CO_2					
	$CaSO_4$	Gypsum, plaster of paris	Hard scale					
	$CaCl_2$		Corrosion					
	$MgCO_3$		Soft scale					
	$MgSO_4$	Magnesite	Corrosion					
	Mg(HCO ₃) ₂	Epsom salts	Scale and corrosion					
	NaCl	Common table salt	Electrolysis					
	Na ₂ CO ₃	Washing soda	Alkalinity					
	$NaHCO_2$	Baking soda	Priming and foaming					
	NaOH	Caustic soda	Alkalinity and embitterment					
	Na_2SO_2	Glauber salts	Alkalinity					
	SiO2	Silica	Hard scale					
	Fe ²⁺ and Fe ³⁺	Iron compounds	Encrustation, staining of toilet fixtures					
	Mn ²⁺	Manganese compounds	Encrustation, staining of toilet fixtures					
	Cl	Chloride compounds	Corrosiveness					
	F	Fluoride compounds	Fluorosis					
© 2016 L	indi Grobler		. San Alabergy weiters					

Sedimentation _w

- Particles in suspension is settled out of the fluid and retained against a barrier due to existing forces in the fluid
 - Gravity
 - Centrifugal acceleration
 - Electromagnetic
- · Sedimentation is transported into a settling area and disposed
- of
- Disposal and environmental impact

Disinfection/Sanitation ...

- · Antimicrobial agent applied to no living objects to destroy micro organisms living on objects
- · Disinfection to remove pathogens
 - 1. Chlorination
 - Adding chlorine gas (Cl₂) or hypochlorite (OCI) to water to kill bacteria and other microbes Increased ORP (Oxidation redaction potential) – shorting out microbes
 - Chlorine highly toxic
 - Chlorinate only when low sodium concentration (Sea salt v. table salt)

 - Also prevent spread of water born diseases such as cholera, dysentery, typhoid etc

Agn Although

Disinfection/Sanitation 2. Ultra-violet radiation Short wavelength ultra-violet discharged from ultra-violet tubes to kill or inactivate micro organisms such as bacteria, viruses and molds by destroying nucleic acids No chemical compounds used although chemical reaction Placement of UV system important – specifically on final used water

Disinfection/Sanitation ...

3. Oxygenation or Aeration

Copyright (C) 2016 Lindi Grobler

Disinfection/Sanitation (

- 4. Ozonation
 - · Dry clean air is passed through a high voltage electric discharge creating ozone of approximately 1% or 10 000 mg.ℓ⁻¹ · Raw water is then passed through a

- treating the water As ozone reacts with water metals created in metal oxide forms need to be filtrated

 - With increase in O_3 slightly decrease in pH
- Disinfection effectiveness against bacteria, viruses (greater than chlorination) and oxidizing properties of ozone make elements like iron, manganese, sulphur plant unavailable or chemically inert Agn Althour

Disinfection/Sanitation @

Disinfection/Sanitation (

- 5. Peroxide treatment
 - Hydrogen peroxide breaks down into two extra oxygen atoms (peroxide bond) with two H-O radicals
 - · Depresses pH slightly Disinfection effectiveness against bacteria, viruses
 - System installation important

Agn Althout

Coagulation _w Coagulation A coagulant (metallic salt) with an opposite charge to colloid is added to water to "destabilize" suspension and cause particles to cling together (agglomerate) and from a micro flock or flake Then filtration and sedimentation of flock or flake Inpurgles

Agn Although

Copyright (C) 2016 Lindi Grobler

Copyright (C) 2016 Lindi Grobler